An in vitro splicing assay reveals the pathogenicity of a novel intronic variant in ATP6V0A4 for autosomal recessive distal renal tubular acidosis
نویسندگان
چکیده
BACKGROUND Autosomal recessive distal renal tubular acidosis (dRTA) is a rare hereditary disease caused by pathogenic variants in the ATP6V0A4 gene or ATP6V1B1 gene, and characterized by hyperchloremic metabolic acidosis with normal anion gap, hypokalemia, hypercalciuria, hypocitraturia and nephrocalcinosis. Although several intronic nucleotide variants in these genes have been detected, all of them fell in the apparent splice consensus sequence. In general, transcriptional analysis is necessary to determine the effect on function of the novel intronic variants located out of splicing consensus sequences. In recent years, functional splicing analysis using minigene construction was used to assess the pathogenicity of novel intoronic variant in various field. METHODS We investigated a sporadic case of dRTA with a compound heterozygous mutation in the ATP6V0A4 gene, revealed by next generation sequencing. One variant was already reported as pathogenic; however, the other was a novel variant in intron 11 (c.1029 + 5G > A) falling outside of the apparent splicing consensus sequence. Expression of ATP6V0A4 was not detected in peripheral leukocytes by RT-PCR analysis. Therefore, an in vitro functional splicing study using minigene construction was conducted to analyze the splicing pattern of the novel variant. RESULTS A minigene assay revealed that the novel intronic variant leads to a 104 bp insertion immediately following exon 11. In addition, this result was confirmed using RNA extracted from the patient's cultured leukocytes. CONCLUSION These results proved the pathogenicity of a novel intronic variant in our patient. We concluded that the minigene assay is a useful, non-invasive method for functional splicing analysis of inherited kidney disease, even if standard transcriptional analysis could not detect abnormal mRNA.
منابع مشابه
Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss.
Autosomal recessive distal renal tubular acidosis (rdRTA) is characterised by severe hyperchloraemic metabolic acidosis in childhood, hypokalaemia, decreased urinary calcium solubility, and impaired bone physiology and growth. Two types of rdRTA have been differentiated by the presence or absence of sensorineural hearing loss, but appear otherwise clinically similar. Recently, we identified mut...
متن کاملGenetic investigation of autosomal recessive distal renal tubular acidosis: evidence for early sensorineural hearing loss associated with mutations in the ATP6V0A4 gene.
Mutations in the ATP6V1B1 and ATP6V0A4 genes, encoding subunits B1 and 4 of apical H(+) ATPase, cause recessive forms of distal renal tubular acidosis (dRTA). ATP6V1B mutations have been associated with early sensorineural hearing loss (SNHL), whereas ATP6V0A4 mutations are classically associated with either late-onset SNHL or normal hearing. The phenotype and genotype of 39 new kindreds with r...
متن کاملMutations in ATP6V1B1 and ATP6V0A4 genes cause recessive distal renal tubular acidosis in Mexican families
BACKGROUND Autosomal recessive distal renal tubular acidosis (dRTA) is a rare disease characterized by a hyperchloremic metabolic acidosis with normal anion gap, hypokalemia, hypercalciuria, hypocitraturia, nephrocalcinosis, and conserved glomerular filtration rate. In some cases, neurosensorial deafness is associated. dRTA is developed during the first months of life and the main manifestation...
متن کاملMutational analyses of the ATP6V1B1 and ATP6V0A4 genes in patients with primary distal renal tubular acidosis.
BACKGROUND Mutations in the ATP6V1B1 and the ATP6V0A4 genes cause primary autosomal-recessive distal renal tubular acidosis (dRTA). Large deletions of either gene in patients with dRTA have not been described. METHODS The ATP6V1B1 and ATP6V0A4 genes were directly sequenced in 11 Japanese patients with primary dRTA from nine unrelated kindreds. Large heterozygous deletions were analyzed by qua...
متن کاملMice deficient in H+-ATPase a4 subunit have severe hearing impairment associated with enlarged endolymphatic compartments within the inner ear
Mutations in the ATP6V0A4 gene lead to autosomal recessive distal renal tubular acidosis in patients, who often show sensorineural hearing impairment. A first Atp6v0a4 knockout mouse model that recapitulates the loss of H(+)-ATPase function seen in humans has been generated and recently reported (Norgett et al., 2012). Here, we present the first detailed analysis of the structure and function o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2017